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The effects of fluid inertia, geometry and flow confinement upon the dynamics of
neutrally buoyant elliptical and non-elliptical cylinders over a wide range of aspect
ratios in simple shear are studied experimentally for moderate shear-based Reynolds
numbers Re. Unlike circular cylinders, elliptical cylinders of moderate aspect ratio
cease to rotate, coming to rest at a nearly horizontal equilibrium orientation above a
critical Reynolds number Recr (‘stationary behaviour’). Simple dynamics arguments
are proposed to explain the effects of aspect ratio and flow confinement upon
critical Reynolds number and particle dynamics. Experiments confirm results from
previous numerical simulations that the normalized rotation period for Re < Recr
(‘periodic behaviour’) is proportional to (Recr − Re)−0.5 for small Recr − Re. For
periodic behaviour, maximum and minimum angular cylinder speeds both decrease,
and period increases, as Recr − Re decreases. For stationary behaviour, the cylinder
rotates until it achieves a nearly horizontal equilibrium orientation, which increases
as the Reynolds number approaches the critical value. The experimental results are
in good agreement with previous lattice-Boltzmann simulations for a 0.5 aspect ratio
cylinder.

Variation in angular speed over a rotation period decreases as aspect ratio increases,
while Recr increases as flow confinement and aspect ratio increase. A non-elliptical
cylinder of 0.33 aspect ratio also ceases to rotate above a certain Reynolds number.
Although Recr is different from the corresponding elliptical case, the scaling of the
normalized rotation period for this body as Recr → Re is identical to that for the
elliptical cylinder, suggesting that this scaling is independent of particle shape (i.e.
‘universal’, as conjectured in previous numerical studies). The results also demonstrate
that a variety of centrosymmetric bodies with aspect ratios below unity transition
from periodic to stationary behaviour.

1. Introduction
The study of bluff bodies immersed in a simple shear (linearly varying, zero-mean)

flow is important in understanding the effects of particle geometry upon inertial, or
non-zero Reynolds number, suspension flows. A basic two-dimensional model for a
dilute neutrally buoyant inertial suspension is a freely rotating (torque-free) single
neutrally buoyant circular cylinder suspended about a fixed central axis in shear at
non-zero shear-based Reynolds number Re ≡ a2G/ν. Here, a is the characteristic
particle dimension (circular cylinder radius or largest half-dimension of an ellipsoid),
G is the flow shear rate, and ν the kinematic viscosity of the fluid.

† Author to whom correspondence should be addressed: minami.yoda@me.gatech.edu
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In experiments, the flow is always confined by the test section walls. Moreover,
current technology limits time-dependent simulations of this flow to relatively small
computational domains. Flow confinement, characterized by the ratio of cylinder
diameter to test section width κ = 2a/L, is hence an important issue in these sheared
bluff-body flows. The stability limit for simple shear, or plane Couette, flow (Tillmark
& Alfredsson 1992) imposes an upper limit upon the Reynolds number achievable in
experiments of

Re 6 350κ2. (1.1)

Note that (1.1) is an upper limit; simple shear flow disturbed by a bluff body
is probably less stable than its undisturbed counterpart. Numerical results for flat
plates (Barkley & Tuckerman 1999) and experimental results for circular cylinders
(Bottin et al. 1998) show that even small bodies (κ 6 0.05) destabilize plane Couette
flow, significantly reducing the transition channel-based Reynolds number below its
undisturbed value of roughly 350.

Kossack & Acrivos (1974) have shown that the flow around a circular cylinder
in shear deviates from the Stokes flow solution for Re > 1.0, while Poe & Acrivos
(1975) have shown that it deviates from the perturbation solution for Re > 0.1. In
general, two streamlines crossing at two stagnation points divide the centrosymmetric,
or antisymmetric, flow into five regions: two reversed flow regions to the ‘left’ and
‘right’ of the body; two continuing flow regions ‘above’ and ‘below’ the body; and a
closed streamline region surrounding the freely rotating cylinder. Neither the inviscid
nor the Stokes flow solutions predict this closed streamline region.

Although Poe & Acrivos (1975) reported that confinement had negligible effects for
κ < 0.32, independent numerical (Ding & Aidun 2000) and experimental (Zettner &
Yoda 2001) studies have shown that confinement has a marked effect upon this flow
at higher κ. Flow confinement causes normalized rotation rate to decay more slowly
with Reynolds number (roughly as Re−0.3 for κ = 0.39, vs. Re−0.5 for unconfined flow).
Zettner & Yoda (2001) proposed a simple model to explain these flow confinement
and inertial effects at moderate Re.

Although the steady two-dimensional dynamics of circular cylinders in simple
shear are reasonably well understood over a large range of Reynolds numbers, little
is known about the behaviour of other bluff bodies at non-zero Reynolds number. The
elliptical cylinder in simple shear is a fundamental unsteady two-dimensional bluff-
body flow. Moreover, it represents a first step towards understanding how particle
geometry affects suspension dynamics, and ultimately extending models of suspensions
of perfectly smooth spherical particles to actual three-dimensional suspensions with
particles of varying roughness and shape. The experimental study of this flow is
interesting in terms of understanding both sheared bluff-body flows and particle–fluid
interactions in suspensions.

In comparison with circular and spherical bodies, there is little previous work on
ellipses and ellipsoids in simple shear. Jeffery (1922) studied the motion of a neutrally
buoyant solid ellipsoid described by the equation(
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where (x′, y′, z′) are the three principal axes of the ellipsoid (and hence define a body-
fixed coordinate system), and (a, b, c) are the dimensions of the ellipsoid along these
axes, respectively, in an arbitrary unbounded Stokes flow, or Re = 0. Closed-form
analytical solutions were derived for an unbounded simple shear with the velocity
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field u = Gy and where the z′-axis of the ellipsoid is fixed along the direction of
vorticity. The coordinate system (x, y, z) defines the undisturbed shear flow with x
along the flow direction, y along the velocity gradient direction, and z along the
vorticity direction. The ellipsoid rotates around the z-axis at rate Ω(t) = θ̇(t) where t
is time and θ is angular orientation. The angular orientation, velocity and period (θ,
Ω and T , respectively) are then

θ = tan−1

{
1

AR
tan

[
(AR)Gt

1 + (AR)2

]}
, (1.3)

Ω

G
=

sin2(θ) + (AR)2 cos2(θ)

1 + (AR)2
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2π
[
1 + (AR)2

]
AR

, (1.5)

where AR = b/a 6 1 is the ellipsoid aspect ratio. Note that these Jeffery’s orbit
solutions are independent of c, the ellipsoid dimension along the axis of rotation.
The numerical simulations by Aidun, Lu & Ding (1998) for elliptical cylinders in
simple shear at Re = 0.02 have shown that (1.3)–(1.5) are also valid for the elliptical
cylinder case, where c→∞, at Re ≈ 0. Equation (1.4) implies that the maximum
and minimum angular speeds will occur when the cylinder is vertical and horizontal,
respectively.

Consider an elliptical cylinder fixed symmetrically in plane Couette flow of width
L with speed Ub at the moving walls, giving a shear rate G = 2Ub/L (figure 1a).
The elliptical cross-section has semi-major axis a, semi-minor axis b, and aspect ratio
AR = b/a (0 < AR 6 1), giving a shear-based Reynolds number Re = a2G/ν. For the
circular cylinder (AR = 1), the values for angular velocity and period reduce to the
classic Stokes flow solutions, with Ω/G = 0.5 and GT = 4π.

Feng & Joseph (1995) used quasi-steady and direct numerical simulations to in-
vestigate the relative contributions of particle and unsteady fluid inertia in the two-
dimensional flow of a neutrally buoyant AR = 0.5 ellipse in simple shear at Re = 0.25
and κ = 0.1. They confirmed that the ellipse dynamics closely follow a Jeffery’s orbit
at Re = 0.25, with the inertial terms only slightly affecting the rotation.

Aidun et al. (1998) solved the time-dependent lattice-Boltzmann equation for the
two- and three-dimensional flow around a neutrally buoyant ellipse and ellipsoid,
respectively, freely and symmetrically suspended in simple shear. The flow transitioned
from a time-periodic state to a stationary state above a critical Reynolds number
Recr ≈ 7.25 and 20 for the ellipse and ellipsoid, respectively. For Re < Recr , Aidun et
al. reported that GT ∝ (Recr − Re)−0.5 as Recr − Re→ 0.

Ding & Aidun (2000, referred to in the rest of this paper as DA00) extended these
simulations to an ellipse and oblate spheroid, both at AR = 0.5 and κ = 0.2, for
particle-to-fluid density ratios ρp/ρf ranging from 0.25 to 100. They observed the
same type of transition as Aidun et al. (1998), and showed that the transition was
through a saddle–node bifurcation. DA00 concluded from their results that

GT ∝ |p− pcr|−0.5 for |p− pcr| → 0, (1.6)

where p is some dimensionless flow parameter such as Re or ρp/ρf and pcr is the
value of this parameter at the transition. Based on the form of the transition (i.e.
saddle–node bifurcation), they further hypothesized that this scaling was ‘universal’,
or independent of particle shape, flow confinement and density ratio.
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Figure 1. (a) Definition sketch for a 2a× 2b elliptical cylinder in confined simple shear in a channel
of width L with maximum speed Ub. (b) Schematic of the flow around the cylinder showing the
two off-surface stagnation points (SP), the continuing flow regions, and the reversed flow regions. θ
is the angular position of the cylinder from the horizontal, Ω(t) is its angular speed, and Rs is the
distance from the cylinder centre to either stagnation point.

In the time-periodic state, the flow streamlines were similar to those for the circular
cylinder case, with streamlines crossing at two off-surface stagnation points (indicated
by SP on figure 1b) and dividing the flow into two reversed flow regions, two
continuing flow regions, and a central region that rotates with the body (figure 1b).
Unlike the circular cylinder, this central flow region is not closed and the streamlines
contact the rotating cylinder for a portion of the rotation. In the stationary state,
the body comes to a complete rest at a nearly horizontal angular orientation θo.
DA00 found that the minimum torque on a fixed ellipse of any orientation is positive
for Re 6 Recr . For Re > Recr , however, the net torque is negative when the body
orientation exceeds θo but is less than π, indicating that θo is a stable equilibrium
orientation.

This behaviour is unexpected, given that the actual rotation rate Ω of a circular
cylinder in simple shear increases and Ω/G decreases, implying that Ω/G → 0 for
large Re. Given these surprising numerical results for elliptical cylinders at moderate
Re for AR = 0.5 and 1.0, experiments were carried out for a wide range of neutrally
buoyant elliptical cylinders to study how AR and κ affect particle and fluid dynamics.
A single non-elliptical cylinder was also studied to examine if the scaling of DA00
was ‘universal’. To our knowledge, this work is the first experimental investigation
of this flow, and the first to address flow confinement and certain particle geometry
issues. The experimental facility and data analysis are detailed in the following section.
Section 3 describes the results for 4 6 Re 6 25 for elliptical cylinders of 0.22 6 AR 6 1
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Figure 2. Top view of the plane Couette flow facility, showing the endless belt, large rollers,
and small rollers.

at confinement ratios 0.31 6 κ 6 0.5. The results are analysed and discussed in § 4,
and the simple model previously proposed for circular cylinders is extended to explain
the observed geometric effects.

2. Experimental setup and data analysis
The experimental facility and data analysis procedures used to investigate geometric

effects (described by AR) and confinement effects (characterized by κ) upon the
cylinder and flow dynamics for the elliptical cylinder in simple shear are described in
this section. Elliptical cylinders with AR = 0.22–1.0 and ρp/ρf = 1 in simple shear
were studied for shear-based Reynolds numbers from 4 to 25 and κ = 0.31–0.5.

The plane Couette flow apparatus used in these experiments (figure 2) to create
simple shear flow over a test section of width (extent along y, the velocity gradient
direction) L = 3.8 cm and length (streamwise or x dimension) 35.6 cm is described
in detail in Zettner & Yoda (2001). Based upon the design of Bech et al. (1995),
simple shear flow is created inside a single, endless, tranparent belt supported by two
parallel glass plates along the sides of the test section and driven by two large rollers
at the ends of the test section. Two pairs of small rollers contract the test section to
minimize end effects.

Steadiness, linearity and two-dimensionality of the flow in the test section were
verified by measuring laser-Doppler velocimetry (LDV) velocity profiles in the (empty)
test section for channel-based Reynolds numbers Rech = UbL/ν = 120–900 where Ub

is the belt speed. Velocity profile linearity and two-dimensionality are quantified by
the mean deviation between the measured and expected x-component of the velocity
(U and Ue, respectively) normalized by Ub for each profile: ε1 ≡ 〈U−Ue〉/Ub. Figure 3
shows U/Ub (vertical axis) as a function of channel position 2y/L (horizontal axis) for
three different Rech and elevations (z-coordinate) in the test section. For Rech < 275
which corresponds to Re < 22 for κ = 0.4, ε1 < 5% over a volume of the test
section spanning −15.2 cm 6 x 6 15.2 cm and −27.4 cm 6 z 6 −3.8 cm. Flow
steadiness is quantified by the root-mean-square of the x-component of the velocity,
urms, normalized by Ub: ε2 ≡ urms/Ub. For Rech < 400 (Re < 22 for κ = 0.33),
ε2 < 8.7 × 10−3. Limiting Rech to 240 or Re to 19 for κ = 0.4 keeps ε1 < 5% and
ε2 < 4.1 × 10−3 over about 80% of the axial length of the cylinders used for these
experiments. Limitations upon steady rotation of the motor driving the facility restrict
the minimum shear rate G in the facility to about 2.0 s−1, corresponding to a minimum
Re = 4 for κ = 0.33.

Elliptical cylinders were fabricated from three different materials for these exper-
iments (dimensions and AR given in table 1): Pyrex (borosilicate glass) and epoxy
resin cylinders for flow-field measurements and dynamics studies, and brass cylinders
for dynamics studies. The two Pyrex cylinders were drawn hollow tubes fabricated by
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Case a (cm) AR κ Material

Cylinder A 0.78 0.22 0.41 Epoxy resin
Cylinder B 0.62 0.27 0.33 Epoxy resin
Cylinder C 0.63 0.33 0.33 Pyrex (non-elliptical)
Cylinder D 0.62 0.33 0.33 Epoxy resin
Cylinder E 0.79 0.33 0.41 Epoxy resin
Cylinder F 0.63 0.50 0.33 Pyrex
Cylinder G 0.79 0.52 0.42 Epoxy resin
Cylinder H 0.60 0.69 0.32 Brass
Cylinder I 0.58 0.75 0.31 Brass
Cylinder J 0.75 1.0 0.39 Fused quartz
Cylinder K 0.95 1.0 0.50 Fused quartz

Table 1. Cylinder dimensions and material.

1.0

0.5

0

–0.5

–1.0
–1.0 –0.5 0 0.5 1.0

2y/L

U
Ub

Figure 3. Mean velocity profiles in empty Couette flow test section at z = −6.4 cm and Rech: 275
(circles), 209 (squares) and 125 (triangles); and also at Rech = 275, z = −26.7 cm (diamonds) and
−15.3 cm (crosses). The solid line indicates ideal simple shear. The error is about the vertical extent
of the symbols.

Precision Electronic Glass (Vineland, NJ). Both brass cylinders were constructed from
0.405 cm diameter brass tubing uniformly compressed along one axis to achieve the
desired AR. The Pyrex and brass tubes were sealed at both ends with circular Pyrex
end caps (diameter 1.27 cm and thickness 0.16 cm) with 0.038 cm diameter centred
through-holes. The solid epoxy resin (DuPont Somos 7100) cylinders were built by the
Rapid Prototyping and Manufacturing Institute, Georgia Institute of Technology (At-
lanta, GA) with 0.15 cm or 0.20 cm diameter centred through-holes. The results from
the elliptical cylinders are compared with those for fused quartz circular cylinders
(AR = 1) from a previous investigation in the same facility (Zettner & Yoda 2001);
the geometric characteristics of these cylinders are therefore also given in table 1.

All the cylinders had an axial length of 25.4 cm, or 26–41 times the maximum
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Figure 4. Sketches of an x, y cross-section of (a) non-elliptical Cylinder C (AR, κ) = (0.33, 0.33)
and (b) elliptical Cylinder D with the same (AR, κ).

cross-section dimension. End effects should be minor for these cylinders, based upon
particle-image velocimetry data at different axial locations for the circular cylinder
cases.

It was impossible to produce perfectly elliptical cylinders in all cases, given the
various fabrication methods. The effects of deviation from elliptical cross-section
were studied using two cylinders (Pyrex and epoxy resin) with the same AR = 0.33
and κ = 0.33 but different cross-sections. The epoxy cylinder was elliptical (within
rapid prototyping tolerances of ±0.1 mm), while the Pyrex cylinder was essentially a
rectangle with rounded corners (figure 4).

The cylinders were suspended in the centre of the test section on a single 0.025 cm
diameter monofilament passing through either the cylinder or the end cap through-
holes, allowing the cylinders to freely rotate about their centres. The cylinders are
therefore free to rotate but unable to translate. In all cases, the monofilament line
was observed to remain straight and vertical during the experiments, confirming that
the cylinder experienced no net force due to the flow. Given that a freely suspended
particle symmetrically positioned in simple shear flow should experience no net force,
the results of these experiments on particles should be directly comparable with the
numerical simulations of DA00 on freely suspended particles.

All cylinders were density-matched to the surrounding fluid (i.e. neutrally buoyant).
The brass, Pyrex, and fused quartz cylinders were partially filled with fluid to make
them neutrally buoyant. Stainless steel capillary tubing (15 and 18 gauge or 0.18 and
0.13 cm outer diameter, respectively) was inserted into the central through-hole of the
epoxy resin cylinders to make them neutrally buoyant; the monofilament then passed
through the capillary tubing.

Three different working fluids are used in these experiments. An index- and density-
matched aqueous solution of approximately 40% (w/w) glycerin and 36% (w/w)
sodium iodide (index of refraction n = 1.48; density ρ = 1.5 g cm−3; kinematic viscos-
ity ν = 15–20 cSt) is used with the transparent Pyrex cylinders. A density-matched
aqueous solution of about 70% (w/w) glycerin with ν = 15–20 cSt and ρ = 1.25 g cm−3

is used with the opaque brass and epoxy resin cylinders. Finally, a third density-
matched high-viscosity aqueous solution with ν = 30–40 cSt and 75–77% (w/w)
glycerin is used with Cylinder F ((AR, κ) = (0.50, 0.33)) to carry out experiments at
low Re.

Cylinder dynamics were studied by filming the cylinder at 30 Hz and 33 ms exposure
time with a B/W CCD camera (TI Multicam CCD MC-1134P) and S-VHS VCR
(Panasonic AG 1980P) on videotape. A mark on the top of the cylinder gave an
absolute angular reference. Rotation period T was measured with a stopwatch during
the recording; T was defined in these experiments to be the average rotation period
over five full consecutive cylinder rotations. The maximum variation in the measured
period was approximately 1% for periods up to 20 s and 3% for periods exceeding
60 s, corresponding to standard deviations of 0.02% and 0.04%, respectively.
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Every tenth image (sampling rate = 3 Hz) was digitized from the videotape record-
ing using a framegrabber card (ImageNation PX500) onto a 200 MHz PC HD. The
cylinder angular position θ was determined with a MATLAB program from these
images to within ±0.02 radians. Angular velocity Ω was calculated from the θ data
using a second-order central difference method; angular acceleration α was then cal-
culated from Ω in the same fashion. To determine θ at the maximum and minimum
angular velocities Ωmax and Ωmin, respectively, Ω was plotted as a function of θ over
2–4 cylinder revolutions, and a fourth-order polynomial was curve-fit to the data.

The elliptical cylinder was considered ‘at rest’ if it remained stationary for a
minimum of 300 s, compared to the maximum rotation period observed in these
experiments of about 120 s. The critical Reynolds number Recr was then defined as
the maximum Re where there was rotation; in all cases save one, these values are
within 0.3 of the minimum Re where the cylinder was at rest. For AR = 0.33 and
κ = 0.33, Recr was within 1 of the minimum ‘at rest’ Re value. The greater uncertainty
in this particular case was due to the extremely low Recr value, which was just above
the minimum attainable Re in the experimental facility. In all cases, the Recr values
were observed to be quite sensitive to any density mismatch between the cylinder and
working fluid.

The flow-field dynamics were investigated using flow visualization and digital
particle image velocimetry (PIV) (detailed in Zettner & Yoda 2001). The fluid is seeded
with neutrally buoyant silver-coated hollow glass spheres with a mean diameter of
12.8 µm and a density of 1.3 g cm−3 (Potters Industries SH400S20) at a volume fraction
of 5–10 p.p.m. An (x, y)-plane of the flow is illuminated with a 0.1 cm thick laser light
sheet at a depth z = −6.4 cm below the free surface, near the centre of the cylinder.
The width (x-extent) of the imaged flow region ranged in these experiments from
1.8 cm to 12 cm, corresponding to an image magnification of 0.07–0.358. The CCD
camera used in the dynamics experiments images the motion of the tracer particles
using frame straddling (Raffel, Willert & Kompenhans 1998), with an exposure time
per frame of 3 ms and an interframe spacing within each pair of frames of 6–16 ms.
The CCD frames are directly written via the framegrabber card to the 33 MB RAM
of a 200 MHz PC as 480 row by 640 column 8-bit bitmap images.

The particle images were used to obtain both pathline and velocity information.
Composite digital pathline images were obtained by superimposing up to 60 images,
averaging grey scales and manually adjusting contrast and brightness. Velocity data
were obtained from the particle images using a MATLAB cross-correlation-based PIV
program with 32 pixel × 32 pixel interrogation windows and 50% overlap between
adjacent windows. This window dimension corresponds to a spatial resolution of
0.73 mm at a magnification of 0.358 and 1.3 mm at a magnification of 0.07. Nearly
instantaneous stagnation point locations were determined by bilinear interpolation of
the PIV data.

3. Results
Rotation period T and angular position θ were measured over time t for elliptical

cylinders with AR = 0.22–1.0, κ = 0.31–0.5 and Re = 4–25. For the range of Re
studied, elliptical cylinders with moderate aspect ratios (0.33 6 AR 6 0.52) showed
two distinct flow behaviours. For Re below a critical value Recr , the cylinder rotated
with a constant period but time-varying angular speed (defined here as ‘periodic
behaviour’). For Re > Recr (‘stationary behaviour’), the cylinder remained at rest at
a specific angular orientation θo. If the cylinder was released from an initial angular
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Symbol Case AR κ Recr

cross Cylinder A 0.22 0.41 Not observed (< 4)
plus Cylinder B 0.27 0.33 Not observed (< 4)
filled diamond Cylinder C 0.33 0.33 7.3 (non-elliptical)
no symbol Cylinder D 0.33 0.33 4–5
square Cylinder E 0.33 0.41 6
filled circle Cylinder F 0.50 0.33 7.3
solid line or filled triangle DA00 0.50 0.2 7.25
circle Cylinder G 0.52 0.42 13.0
filled triangle Cylinder H 0.69 0.32 Not observed (> 25)
filled inverted triangle Cylinder I 0.75 0.31 Not observed (> 25)

Table 2. Critical Reynolds number Recr (when observed) for all elliptical cylinder cases studied.
The various cylinders are identified by both a symbol and a letter.

orientation θ 6= θo, the cylinder rotated until θ = θo, remaining stationary at this
orientation. For Re = 4–25, only periodic behaviour was observed for high-aspect-
ratio (nearly circular) cylinders (0.69 6 AR 6 1), while only stationary behaviour was
observed for low-aspect-ratio cylinders (0.22 6 AR 6 0.27). Periodic and stationary
behaviours are discussed in detail in §§ 3.2 and 3.3.

In all pathline images and PIV vector plots shown, flow goes from right to left at
the top and left to right at the bottom of the image. Only the right-hand half of the
centrosymmetric flow is shown in all cases (i.e. the cylinder is on the left-hand side).
Spatial coordinates, when given, are normalized by a; the centre of the cylinder is at
the origin.

3.1. Critical Reynolds number

Table 2 gives the critical Reynolds numbers Recr (when observed) for all the elliptical
cylinders. Increases in AR increase Recr , or delay transition to stationary behaviour.
For an AR = 0.33 elliptical cylinder at κ = 0.33 (Cylinder D), Recr = 4–5. Increasing
AR to 0.5 (Cylinder F) increases Recr to 7.3. The experimentally measured Recr for
Cylinder F is in excellent agreement with the value of 7.25 obtained by DA00 in their
lattice-Boltzmann simulations, despite the discrepancy in κ (0.2 for DA00, vs. 0.33
for Cylinder F). Confinement ratios below 0.33 appear therefore to have little effect
upon Recr , similar to the circular cylinder case, where wall or confinement effects were
observed to be negligible for κ < 0.32 (Poe & Acrivos 1975). Increases in κ above
0.32, however, do appear to increase Recr; increasing κ to 0.42 (Cylinder G) increases
Recr to 13.0, vs. a Recr of 7.3 at κ = 0.33.

3.2. Periodic behaviour (Recr − Re) > 0

For periodic behaviour, T is a function of Re, κ and AR, reducing to Jeffery’s solution
(1.5) at Re = 0. Period non-dimensionalized by shear rate GT is plotted as a function
of Re in figure 5 for Re < Recr at 0.33 6 AR 6 0.52 and all Re for 0.69 6 AR 6 1.
Data are presented for 0.33 6 AR 6 1.0 and 0.2 6 κ 6 0.5. The intermediate AR
cases – 0.33 6 AR 6 0.52 – show a large increase in GT just below their Recr . These
results verify the numerical results of DA00 at (AR, κ) = (0.5, 0.2) (solid line), who
reported that GT →∞ as Re→ Recr. Moreover, the non-elliptical cylinder (filled
diamond) case also shows this large increase in GT . In contrast, the high-aspect-ratio
cylinders – 0.69 6 AR 6 1 – show only a slight increase in GT over the entire range
of Re observed. Given the trends observed for the other cases, this suggests that the
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Figure 5. Plot of dimensionless period GT vs. shear-based Reynolds number Re for cylinders of
0.33 6 AR 6 1.0 and 0.2 6 κ 6 0.5. The various (AR, κ) cases and their corresponding symbols are
given in the figure legend. Note that all cylinders are elliptical except for the (AR, κ) = (0.33, 0.33)
case (filled diamond). The maximum standard deviation in T is 0.04%. These experimental data
are compared with the numerical results of DA00 (solid line).

critical Reynolds number of these high-AR cylinders (if it exists) lies well above the
maximum observed Re.

The marked scatter in the AR = 0.5, κ = 0.33 (filled circles) data is mainly due
to the use of several different viscosity (and composition) solutions to extend the
minimum attainable Re. We also expect that the data at low Re have increased
error since friction in the cylinder setup is comparable to viscous forces at these
low G. Nevertheless, the experimental (filled circles) and numerical (solid line) data
at AR = 0.5 are in good agreement for Reynolds numbers just below Recr even
at different values of κ (0.33 vs. 0.2). This agreement between the experimental
data and the two-dimensional numerical simulations confirms that end effects in the
experiments due to the finite cylinder axial length of 25.4 cm are minimal.

The consistently higher experimental results are most likely due to friction in the
cylinder mount (higher T ⇒ lower Ω). Figure 6 compares normalized angular position
θ/π of an AR = 0.5 elliptical cylinder as a function of non-dimensionalized time Gt
for the numerical simulations of DA00 at Recr − Re = 3.5, κ = 0.2 (dashed line) and
our experimental data at a similar Recr −Re = 3.7, κ = 0.33 (solid line). The effect of
friction in the experiments is evident: by Gt = 70 (after about two full rotations), the
experimental measurement lags the numerical result by half a rotation.

Figure 7 shows the non-dimensionalized rotation period GT vs. the difference
between the critical and actual Reynolds numbers Recr − Re on a log-log plot
using the same symbols as in figure 5. As Recr − Re → 0, DA00 showed that
GT ∼ (Recr − Re)−0.5 for elliptical cylinders and ellipsoids, and conjectured that this
scaling was independent of particle shape. All the elliptical cylinder cases where Recr
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Figure 6. Normalized angular position θ/π vs. dimensionless time Gt for experimental data (dashed
line) at Recr − Re = 3.7 at κ = 0.33 and numerical data (solid line) at Recr − Re = 3.5 at κ = 0.2,
both for an AR = 0.5 elliptical cylinder. The error in the experimentally measured θ/π values is
0.006.
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Figure 7. Log-log plot of dimensionless period GT as a function of the difference between the
actual and critical Reynolds numbers Recr−Re. The symbols are identical to those used in figure 5.
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Figure 8. Normalized angular position θ/π (a), angular speed Ω/G (b) and acceleration α/G2 (c)
vs. normalized time Gt over half a revolution for five different elliptical cylinder cases. Re−Recr or
Re, AR and κ values for each case, along with the appropriate symbol, are given in the legend in
(a). The error in the experimentally measured θ/π values is ±0.006.

is observed in these experiments over a wide range of κ and AR follow the scaling
relationship of DA00 for small Recr − Re. Moreover, this scaling also appears to
hold for the nearly rectangular (non-elliptical) Cylinder C (filled diamond). Although
this non-elliptical cylinder has a quite different Recr value from the corresponding
elliptical case (Cylinder D), these data are in excellent agreement with the numerical
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Cylinder Recr − Re θ/π at Ωmax θ/π at Ωmin
(AR, κ) or Re (0.0 6 θ/π 6 1.0) (0.0 6 θ/π 6 1.0)

Jeffery’s orbit (1.4) Re = 0 0.50 1.00
Cylinder F
(0.50, 0.33) 0.5 0.48 0.97

Cylinder F
(0.50, 0.33) 5.3 0.54 0.95

Cylinder G
(0.52, 0.42) 5.3 0.50 1.00

Cylinder I
(0.75, 0.31) Re = 6.8 0.51 0.96

Cylinder E
(0.33, 0.41) 0.5 0.48 0.96

Cylinder C
(0.33, 0.33) 5.1 0.48 1.00
non-elliptical

Table 3. Angular position at maximum and minimum angular speed at various Recr − Re or Re
(if no Recr observed).

results of DA00 (solid line) for Recr−Re < 1, which has the same Recr but a different
shape and AR.

Figure 8 shows the normalized angular orientation θ/π (a), speed Ω/G (b) and
acceleration α/G2 (c), which is proportional to the net torque, vs. dimensionless
time Gt over a half-period for five cases which include four different cylinders, two
differential Reynolds numbers (Recr − Re), two values of confinement and three
aspect ratios. The figure includes a high-aspect-ratio case that exhibits only periodic
behaviour (i.e. Recr > 25) at (AR, κ) = (0.75, 0.31) and Re = 6.8 (filled inverted
triangles). All the cylinders are at θ/π = 0 at t = 0 and near θ/π = 1 at the end of the
half-period t = 0.5T . The area under each α/G2 curve in figure 8(c) is zero, since the
net torque is zero over a half-revolution. Measurements of angular orientation, speed
and acceleration obtained every 0.33 s are shown over a half-period for each case.
Note that the horizontal range and number of measurements (directly proportional
to actual time) vary with each case due to variations in T .

The cylinder always rotates counterclockwise (i.e. Ω > 0). Starting at θ = 0 at
t = 0 and minimum Ω/G > 0, the cylinder accelerates to its maximum speed, passing
rapidly through a vertical orientation (θ/π ≈ 0.5), then decelerates to a minimum
velocity at a nearly horizontal position (θ/π ≈ 1). The error in the θ/π measurements
is about 0.006. The normalized angular speed averaged over a full rotation is always
significantly less than that for a circular cylinder at the same Re and κ (Zettner
& Yoda 2001). In all cases, the maximum angular speed Ωmax/G (corresponding
to zero α) is less than unity, and occurs at Gt ≈ 10. As Recr − Re decreases (i.e.
Re→ Recr), both the non-dimensionalized angular speed and acceleration curves
develop progressively longer ‘tails’, remaining nearly constant at a minimum value
for long intervals (compare filled squares and circles with filled circles and squares
for Recr − Re = 5.3 and 0.5). Since T increases sharply as Re → Recr (cf. figure 5),
both cylinders at Recr − Re = 0.5 (filled circles, squares) remain nearly horizontal
for almost half of an 18 s half-period. For fixed AR and κ, both Ωmax/G and Ωmin/G
decrease as Recr − Re decreases (filled squares and filled circles), in agreement with
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a

Figure 9. Sequential composite pathline images, each spanning 0.67 s and numbered in order, of
elliptical Cylinder E (AR, κ) = (0.33, 0.41) at Recr − Re = 1.8. The grey region in the definition
sketch above the images shows the region visualized with respect to the ellipse, which is rotating
counterclockwise.

the results of DA00 (cf. their figure 8). Although not shown here, θ, Ω, and α for
non-elliptical Cylinder C show the same qualitative behaviour as Re→ Recr.

Cylinders at fixed AR and Recr − Re with different Re and somewhat different
κ (filled squares and circles for κ = 0.33 and 0.4, respectively) exhibit qualitatively
similar dynamics, as predicted by (1.6). Flow confinement, at least over the range of
κ studied, does not appear to have much effect upon cylinder dynamics at fixed AR
and Recr − Re. Confinement does affect Recr for κ > 0.33; increasing confinement
at a fixed AR and Re therefore increases Recr − Re, implying that both Ωmax/G and
Ωmin/G increase. Comparison of filled circles and circles from figure 8(b) at the same
Re of 6.7 but different (Recr − Re), AR = 0.5, and κ = 0.33 and 0.42, respectively,
shows this effect on Ωmax/G. Increasing AR decreases Ωmax/G and increases Ωmin/G
(compare filled inverted triangles, filled circles with squares for AR = 0.75, 0.5 and
0.33), corresponding to a greatly reduced angular acceleration. Note that Ωmin → Ωmax
and α→ 0 for a circular cylinder (AR = 1.0).

Table 3 lists the θ/π values at Ωmax and Ωmin for the cases shown in figure 6, Jeffery’s
solution, and non-elliptical Cylinder C. The maximum angular speed occurs when the
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Figure 10. Close-up PIV vector plot of the flow around Cylinder E at Recr − Re = 1.8.
This roughly corresponds to image 4 in figure 9.

ellipse is nearly vertical (θ/π ≈ 0.5) and the minimum speed occurs when the ellipse is
essentially horizontal (θ/π ≈ 1). Moreover, these results appear to be independent of
Recr−Re: Ωmax results obtained from over twenty Cylinder F cases exhibiting periodic
behaviour at 0.3 6 Recr − Re 6 5.9 gave θ/π = 0.47–0.54. Similarly, the Ωmax results
from eight non-elliptical Cylinder C cases for 0.7 6 Recr − Re 6 5.1 gave Ωmax values
ranging from 0.48 to 0.50. The larger variation in the θ/π values at Ωmax is due to our
relatively poor angular resolution when sampling these high rotation rates at 30 Hz;
the typical difference in consecutive angle measurements near Ωmax is ∆θ/π = 0.06,
vs. ∆θ/π = 0.005 near Ωmin.

Figure 9 shows twelve sequential composite pathline images numbered in order,
each spanning 0.67 s (20 frames), of an elliptical cylinder in simple shear rotating
counterclockwise (along the shear direction) at Recr − Re = 1.8, AR = 0.33 and
κ = 0.41 (Cylinder E). All the images are acquired at the same location in the flow.
The cylinder, which is partially visible on the left-hand side of all images except 7
and 8, has maximum Ω in images 6 and 9 (note blurred edge), and minimum Ω in
images 1 and 12. In all images, a reversed flow region is visible on the right, the two
continuing flow regions are visible at the top and bottom, and a stagnation point
is visible in the middle. The central streamline region, visible in images 7 and 8, is
obscured by the cylinder in most of the images. Note the pathlines normal to the
cylinder surface in images 5 and 6.

Stagnation point position varies significantly over these pathline images. PIV data
were used to determine the location of the single stagnation point in this half of the
antisymmetric flow. Figure 10 shows a representative PIV vector plot of the nearly
instantaneous in-plane flow velocity components around an AR = 0.33 elliptical
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Figure 11. Normalized stagnation point distance Rs/a (open squares; left-hand scale) and acceler-
ation α/G2 (filled circles; right-hand scale) vs. dimensionless time t/T over half a rotation period
for the flow shown in figure 9. The error bar represents two PIV grid cells.

cylinder at Recr − Re = 1.8 and κ = 0.41 (Cylinder E) at an angular position similar
to image 4 in figure 9. The location of the off-surface instantaneous stagnation point
at (x/a, y/a) = (1.2,−0.1), corresponding to a radial distance from the cylinder centre
Rs/a = 1.2, is indicated by a circle.

Figure 11 shows the normalized distance between the cylinder centre and the
stagnation point Rs/a determined using PIV data (open squares; left-hand vertical
scale) and angular acceleration α/G2 (filled circles; right-hand scale), both vs. t/T
for half a revolution of Cylinder E (AR, κ) = (0.33, 0.41) at Recr − Re = 1.8. Time
is defined so that at t/T = 0, the cylinder is at the angular orientation of image 1
in figure 9. Each datapoint for Rs/a is the stagnation point location averaged over
66 ms. Rs/a = 1 corresponds to the path traversed by the edge of the ellipse; Rs/a
averaged over a full rotation is 1.1 at this Re. The error bar on the far right-hand side
indicates the size of two PIV grid cells (0.19a or 1.5 mm); we expect the experimental
error to exceed the spatial resolution since Rs is determined from interpolated PIV
data. The cylinder is not visible in the region imaged for 0.24 6 t/T 6 0.3 (cor-
responding to images 7 and 8 in figure 9), so no speed and acceleration data were
obtained over this interval. The α curve is nevertheless qualitatively similar to that in
figure 8.

The stagnation point moves in towards the cylinder centre as the cylinder accel-
erates, with Rs/a reaching its minimum value of about 0.9 at α ≈ 0 (or at Ωmax).
It then moves out from the centre as the cylinder decelerates, reaching a maximum
Rs/a value of approximately 1.3 at minimum α (cf. figure 11). Although not shown
here, PIV results at various Re show that the distance from the cylinder centre to the
stagnation points averaged over a full rotation decreases as Re increases for a given
(AR, κ), in agreement with observations for the AR = 1 circular cylinder (Zettner &
Yoda 2001; DA00)

Periodic behaviour was also observed for high-aspect-ratio (0.69 6 AR 6 1.0)
elliptical cylinders (Cylinders H, I, J and K). Although these cases followed the same
trends as the intermediate AR cases for T , Ω and α as Re increased, they did not
reach a critical Reynolds number and transition to stationary behaviour within the
range of experimentally accessible Re = 4–25. We expect that a Recr does exist for
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Figure 12. Sequential snapshots (33 ms exposure) numbered in order of Cylinder E at
Recr − Re = −2.0 starting from rest. The cylinder accelerates and comes to rest at an equilib-
rium angle θo ≈ π in the last image (8).

at least some of these high-AR cylinders, but this Recr value exceeds the maximum
Reynolds number accessible with our facility. As AR approaches 1.0, however, the
limitations upon the stability of the undisturbed simple shear (plane Couette) flow
(cf. (1.1)) may also preclude the existence of a critical Reynolds number.
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Figure 13. (a) Composite pathline image of Cylinder E at Recr − Re = −2.0 spanning 2 s; this
image is composed of the 60 snapshots immediately following those of figure 12. The steadiness
of the pathlines and the crisp cylinder boundary show that the cylinder remains at rest over this
interval. (b) The corresponding PIV vector plot under identical conditions.
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Figure 14. Plot of equilibrium angle θo/π vs. Recr − Re or −Re (if no Recr observed) for cylinders
of 0.22 6 AR 6 0.52 and 0.2 6 κ 6 0.42. The various (AR, κ) values and their corresponding
symbols are given in the figure legend. All cylinders are elliptical with the exception of the
(AR, κ) = (0.33, 0.33) case (filled diamonds). The results are compared with the numerical data of
DA00 at (AR, κ) = (0.50, 0.2) (filled triangles).

3.3. Stationary behaviour (Recr − Re) < 0

Figure 12 shows eight sequential instantaneous images (exposure = 33 ms) numbered
in order and spaced 1 s apart for an AR = 0.33 elliptical cylinder starting from rest
at Recr − Re = −2 and κ = 0.41 (Cylinder E). The cylinder accelerates and rotates
counterclockwise, coming to rest at a nearly horizontal equilibrium orientation θo in
the final image. The next 2 s (60 frames) of this sequence comprise the composite
pathline image in figure 13(a). The pathlines (streamlines for this steady flow) are in
good qualitative agreement with an instantaneous PIV vector plot of the flow around
an AR = 0.33 cylinder at equilibrium for Recr − Re = −2 and κ = 0.41 (figure 13b).
The two stagnation points on the cylinder surface in this half of the centrosymmetric
flow are indicated by circles.

In all cases exhibiting stationary behaviour (Re > Recr for 0.33 6 AR 6 0.69
cylinders and all Re observed for 0.22 6 AR 6 0.27 cylinders), the cylinder rotates
from any initial orientation to a nearly horizontal orientation (i.e. θo is slightly less
than π); θo does vary slightly, however, with Re, AR and κ. In contrast with periodic
behaviour, the cylinder rotates clockwise (i.e. negative Ω, α and net torque) at a fixed
Re > Recr until it reaches the equilibrium orientation if released from rest at an initial
orientation angle θo < θ < π. The cylinder rotates counterclockwise (i.e. positive Ω, α
and net torque) when released from rest at π < θ < 2π + θo, clearly indicating that
θo is a stable equilibrium angle. These results are in agreement with the numerical
results of DA00.

Figure 14 shows the measured θo values normalized by π as a function of Recr−Re
for elliptical cylinders of 0.33 6 AR 6 0.52 and 0.2 6 κ 6 0.42 and a non-elliptical
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cylinder of AR = 0.33 and κ = 0.33 (filled diamonds). θo/π results are also presented
vs. −Re for elliptical cylinders at (AR, κ) = (0.22, 0.4) (crosses) and (0.27, 0.33) (pluses);
no Recr was observed for either cylinder, implying that Recr , if it exists, is less than 4.
The experimental results are compared to the numerical results of DA00 for AR =
0.33, κ = 0.2 (filled triangles). The error in the θo/π measurements is approximately
±0.006. As Recr → Re, the equilibrium angle increases (i.e. the cylinder becomes more
horizontal). The AR = 0.5 (filled circles) are in good agreement with the numerical
results (filled triangles). Comparison of the results at different AR and κ implies that
the equilibrium angle decreases as AR decreases, but increases as κ increases.

Cylinders with AR = 0.22 and 0.27 and κ = 0.41 and 0.33, respectively (Cylinder
A and Cylinder B), exhibited only stationary behaviour within the range of Re
studied. Jeffery’s solution (1.5) predicts that these low-aspect-ratio cylinders will
exhibit periodic behaviour as Re → 0 with constant period GT = 30 and 25 for
AR = 0.22 and 0.27, respectively. Limitations of the experimental facility precluded
studies at Re below 4, so this behaviour could not be verified.

4. Discussion of results
Simple arguments are proposed in this section to explain the effects of AR and Re

upon Ω(t) and AR and κ upon Recr observed and described in the previous section.
The effects of geometry and their implications for actual non-colloidal particles are
also briefly discussed.

4.1. Angular speed Ω(t): periodic behaviour

At large Recr−Re > 0, the elliptical cylinder rotates with time-varying angular speed.
As Recr − Re decreases (Re increases), the results from the previous section show
that the maximum and minimum angular speeds both decrease for the cylinder. A
decrease in AR at fixed Recr − Re and κ increases Ωmax/G and decreases Ωmin/G; the
range of torques ‘sampled’ by the freely rotating particle increases, leading to greater
variation in angular acceleration and speed within a rotation period.

For periodic behaviour (Re < Recr), streamlines crossing at two off-surface stag-
nation points to the ‘left’ and ‘right’ of the cylinder divide the flow into five regions:
a central streamline region around the rotating cylinder, two reversed flow regions,
and two continuing flow regions. For an (x, y)-plane of the flow, the reversed flow
regions to the left and right of the cylinder contribute a negative (clockwise) torque
with magnitude T−; the continuing flow regions above and below the cylinder exert
a positive (counterclockwise) torque with magnitude T+ (cf. figure 1) (DA00). The
angular speed of the cylinder is maximum for a nearly vertical cylinder, and minimum
for a nearly horizontal cylinder. The angular acceleration and torque on the cylinder
should then be zero at these orientations.

Consider the dynamics of an elliptical cylinder of unit axial length (z-dimension)
in a test section of width L when the cylinder is at its maximum angular speed
Ωmax at a nearly vertical orientation (figure 15a). The magnitude of the torque on
the cylinder due to the flow is the product of the viscous shear stress at the cylinder
surface, the area over which this stress acts, and the moment arm (i.e. cylinder center
to surface distance). If we assume that the velocity profiles near the cylinder surface
are roughly linear, the continuing flow regions above and below the cylinder exert a
positive torque T+

v on the nearly vertical cylinder with magnitude

T+
v ≈ µ∂u∂yA

+a ∼ µ0.5GL− Ωmaxa
0.5L− a ba = µab

G− Ωmaxκ
1− κ , (4.1)
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Figure 15. Definition sketch for scaling discussion in § 4. (a) A vertically oriented elliptical cylinder
in simple shear with an idealized linear velocity profile near the cylinder surface from both the
Eulerian (left) and Lagrangian (right) viewpoints. (b) A similar sketch for a horizontal elliptical
cylinder at minimum angular speed.

where µ is the fluid viscosity, u is the x velocity component andT+
v acts over cylinder

surface area A+. Similarly, the reversed flow regions exert a negative torque T−v on
the nearly vertical cylinder with magnitude

T−v ≈ µ ∂v∂xA
−b ∼ µ Ωmaxb

Rvs − bab, (4.2)

where v is the y velocity component, T−v acts over cylinder surface area A−, and
Rvs < a is the distance from the cylinder centre to the stagnation point at maximum
angular speed (cf. figure 11). For zero torque, T−v ∼ T+

v , or

G− Ωmaxκ
1− κ ∼ Ωmaxb

Rvs − b . (4.3)

Solving for Ωmax gives

Ωmax

G
∼ Rvs − a(AR)

a(AR) + κ(Rvs − 2a(AR))
< 1. (4.4)

Next, consider the same elliptical cylinder when the cylinder is at its minimum
angular speed Ωmin at a nearly horizontal orientation (figure 15b). Again modelling
the velocity profiles near the cylinder surface as linear, the positive torque T+

h on the
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nearly horizontal cylinder has magnitude

T+
h ≈ µ∂u∂yA

+b ∼ µ0.5GL− Ωminb
0.5L− b ab = µab

G− Ωminκ(AR)

1− κ(AR)
. (4.5)

The negative torque T−h on the nearly horizontal cylinder has magnitude

T−h ≈ µ ∂v∂xA
−a ∼ µ Ωmina

Rhs − aba, (4.6)

where Rhs > a is the distance from the cylinder centre to the stagnation point at
minimum angular speed (cf. figure 11). Balancing the two components and solving
for Ωmin gives

Ωmin

G
∼ Rhs − a
a+ κ(AR)(Rhs − 2a)

<
Ωmax

G
. (4.7)

As expected, Ωmin = Ωmax for AR = 1.0. As Re increases, the stagnation point
approaches the cylinder surface, or Rhs → a, as Ωmin/G→ 0, corresponding to station-
ary behaviour. Note that (4.4) and (4.7) depend upon Re; particle dynamics actually
depend upon Recr − Re, where Recr varies with AR and κ.

If Rvs and Rhs vary weakly with AR, a decrease in AR for fixed Re, a and κ implies
that Ωmax/G will increase for the moderate κ studied here (κ 6 0.5), while Ωmin/G
will decrease. The angular speed will therefore vary more over each rotation as AR
decreases, in agreement with experimental results. Similarly, if Rvs and Rhs vary weakly
with κ, an increase in κ for fixed Re, a and AR implies that both Ωmax/G and Ωmin/G
will increase, again in agreement with experimental results.

As Re increases, the average distance from the cylinder centre to the stagnation
point decreases for a given (AR, κ), implying that Rvs and Rhs also decrease as Re
increases. For fixed a, AR, and κ, both Ωmin/G and Ωmax/G will therefore decrease
as Re increases for κ 6 0.5, again in agreement with experimental and numerical
observations.

4.2. Critical Reynolds number Recr

To illustrate how aspect ratio affects critical Reynolds number, consider the two
extreme cases: the circular cylinder at AR = 1.0, and the thin flat plate at AR = 0.
The axisymmetry of the circular cylinder ensures a steady rotation rate and zero net
torque upon the cylinder at any instant. We therefore expect Recr → ∞ for AR = 1.
For the thin plate, Jeffery’s solution at zero Reynolds number predicts T →∞ at zero
aspect ratio. At higher Re, a thin plate parallel to the flow would experience zero net
torque because it has thin reversed flow regions and small moment arm with respect
to the continuing flow regions, implying negligible T− and T+, respectively. The
critical Reynolds number is therefore zero for AR = 0. The experimental observations
show that Recr varies continuously with AR between these two limits, increasing
monotonically with AR from an undetermined value below 4 to an undetermined
value above 25 as AR increases from 0.22 to 0.75, respectively.

Table 2 shows that both higher AR and increased flow confinement increase Recr .
The cylinder exhibits stationary behaviour because the negative torque acting upon
the cylinder as it approaches a horizontal orientation is great enough above a certain
Re to decelerate the cylinder to rest. For a cylinder at a Reynolds number just below
its critical value, an increase in the net torque T ≡ T+ −T− when the cylinder is
near its equilibrium position will therefore lead to an increase in Recr .

We propose a simple scaling argument to explain the effects of both AR and
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κ upon Recr . Consider again an elliptical cylinder of unit axial length at Recr −
Re = ε > 0, where ε is small, rotating with positive angular speed Ωh at a nearly
horizontal orientation θ/π < 1. The body will experience positive and negative torque
components T+

h and T−h , respectively, given by (cf. (4.1) and (4.2))

T+
h

µab
∼ G− Ωhκ(AR)

1− κ(AR)
, (4.8)

T−h
µab
∼ Ωha

Rhs − a . (4.9)

For a nearly horizontal cylinder just below the critical Reynolds number, Ωh is
close to the minimum angular velocity. DA00 showed that Ωmin/G ∼ (Recr − Re) (cf.
their equation (9) and figure 9). For this situation, Ωmin/G ∼ ε, and therefore Ωh � G.
If Rhs varies weakly with AR, (4.8) and (4.9) show that T+

h grows more rapidly than
T−h with AR for fixed Re, a and κ. The net torque Th ≡ T+

h −T−h will therefore
increase as AR increases, implying that Recr increases with AR, in agreement with
experimental results. Similarly, if Rhs varies weakly with κ, (4.4) and (4.7) also show
that T+

h grows more rapidly than T−h with κ for fixed Re, a and AR. The net torque
will therefore increase as κ increases, implying that Recr also increases as κ increases,
again in agreement with experimental observations.

Figure 8 demonstrates that the Recr − Re scaling already incorporates flow con-
finement effects on particle dynamics, in agreement with the hypothesis of DA00 that
this scaling is independent of κ. Given that Poe & Acrivos (1975) saw no variation in
rotation rate at AR = 1 for 0.18 6 κ 6 0.32, and Zettner & Yoda (2001) observed sig-
nificant variation in rotation rate at κ = 0.39 and 0.5, wall or flow confinement effects
appear to be significant only above a certain level for circular cylinders. Similarly, flow
confinement effects appear to be significant for elliptical cylinders only for κ > 0.33.
Cylinders of AR = 0.5 at κ = 0.33 and κ = 0.2 (DA00) have virtually identical Recr
values, while AR = 0.5 cylinders at κ = 0.33 and κ = 0.42 have significantly different
Recr (7.3 for Cylinder F vs. 13.0 for Cylinder G).

Comparison of the results from two cylinders with the same AR based upon
maximum outer dimensions but different local radii of curvature or cross-section
shape – elliptical Cylinder D, vs. the nearly rectangular Cylinder C – shows that the
cross-section shape affects the quantitative, but not the qualitative, behaviour of
the body. Cylinder C and Cylinder D had significantly different Recr (7.3 vs. 4–5,
respectively). Nevertheless, Cylinder C exhibited stationary behaviour for Re > 7.3,
and the normalized rotation period of both cylinders was proportional to (Recr −
Re)−0.5 for Recr−Re less than about 2. Moreover, the effects of decreasing Recr−Re on
angular orientation, speed and acceleration were qualitatively similar to those observed
for elliptical cylinders. Given that this cylinder is markedly non-elliptical, these results,
in conjunction with the scaling arguments of DA00, imply that particles with a
broad variety of centrosymmetric cross-sections and particle-to-fluid density ratios
will exhibit a transition to stationary behaviour above some critical Reynolds number.
The results also support the conjecture of DA00 that if these centrosymmetric particles
exhibit this transition, GT ∝ (Recr − Re)−0.5 and that this scaling is independent of
particle shape.

An aspect ratio below unity, resulting in a time-varying torque on the cylinder at
different angular orientations, appears to be the major prerequisite for transition to
stationary behaviour above some critical Reynolds number. The scaling arguments
in the previous subsections are independent of body shape, requiring only that the
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principal axis along the maximum dimension of the body be nearly horizontal and
vertical at maximum and minimum angular speeds, respectively. Given that Cylinder
C fulfils these requirements (cf. table 3) and the experimentally observed effects of
Re agree with the predictions of (4.4) and (4.7), we conjecture that the qualitative
effects of AR and κ upon particle dynamics will be similar for both elliptical and
non-elliptical cylinders of moderate aspect ratio.

5. Conclusions
These experiments have demonstrated that elliptical cylinders of AR from 0.33 to

0.52 cease rotating, coming to a complete rest at a nearly horizontal equilibrium
orientation, above a critical Reynolds number Recr ranging from 4 to 13. To our
knowledge, this is the first experimental confirmation of the results and conjectures
of Ding & Aidun (2000). This behaviour is in marked contrast to that of cylinders
at AR = 1, which continue to rotate at shear-based Reynolds numbers Re in excess
of 70. In general, the particle dynamics scales with the difference between the critical
and actual Reynolds numbers Recr − Re; rotation period scaled by shear rate is
proportional to (Recr − Re)−0.5 for small Recr − Re, in agreement with the scaling
proposed by DA00. For stationary behaviour at Recr − Re < 0, the equilibrium
orientation increases with decreasing Recr−Re (i.e. as Re→ Recr), increasing AR and
increasing κ. The data also strongly suggest that cylinders with aspect ratios beyond
this range also exhibit this transition; only Reynolds numbers from 4 to 25 were
accessible with the experimental facility used here, however.

In addition to verifying the lattice-Boltzmann simulations of DA00 for an AR = 0.5
elliptical cylinder at κ = 0.2, these experiments greatly extend the range of aspect
ratio studied and address flow confinement issues. The results demonstrate that this
surprising dynamical behaviour and scaling are valid for elliptical cylinders over a
large range of aspect ratios, as conjectured by DA00. The dynamics of elliptical
cylinders varies smoothly with aspect ratio between the extremes of a flat plate and
a circular cylinder. Flow confinement appears to have minimal effects for κ < 0.33.
Increases in aspect ratio and flow confinement (at values above 0.33) both increase
critical Reynolds number.

Periodic behaviour of the elliptical cylinder at Recr − Re > 0 is characterized
by rotation at a constant period but significant variation in angular speed. As
Recr −Re decreases, the maximum and minimum angular speeds of the cylinder both
decrease. Moreover, the cylinder spends a greater fraction of its rotation period in
a nearly horizontal orientation with low angular speed, reducing its angular speed
averaged over a full rotation and increasing its period. In all cases, the period
normalized by shear rate is proportional to (Recr − Re)−0.5 for Recr − Re below
unity. The distance between each of the two stagnation points in this antisymmetric
flow and the cylinder centre varies by almost half the ellipse semi-major axis over
a full rotation. Each stagnation point moves in towards the centre as the angular
speed increases to its maximum value, and moves out when the angular acceleration
decreases to its minimum value. Maximum and minimum angular speeds scaled by
shear rate increase and decrease, respectively, as AR decreases. Moderate changes in
flow confinement appear to have little effect upon the particle dynamics at a given
Recr − Re. Simple dynamics arguments are proposed to explain the observed effects
upon critical Reynolds number and particle dynamics.

Interestingly, an AR = 0.33 non-elliptical cylinder also transitions from periodic to
stationary behaviour, and its normalized period is also proportional to (Recr−Re)−0.5
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for small Recr − Re. Although deviation from elliptical cross-section also affects the
value of the critical Reynolds number, elliptical and non-elliptical cylinders with
the same moderate aspect ratio exhibit qualitatively similar dynamical behaviour, in
agreement with the conjecture by Ding & Aidun (2000) that this scaling is ‘universal’.
We conjecture, based upon our simple arguments, that the qualitative effects of AR
and κ upon particle dynamics will be independent of particle shape.

This work is, to our knowledge, the first experimental study of inertial effects
upon the elliptical cylinder in simple shear flow. The marked effects of inertia in
this fundamental unsteady two-dimensional bluff-body flow are clearly evident in the
large differences between these results at non-zero Reynolds numbers and Jeffery’s
orbits. This study also represents a first step towards understanding how geometry
and fluid inertia affect particle–fluid interactions in a two-dimensional dilute sheared
suspension at non-zero Reynolds number. Although the results from this unsteady
two-dimensional flow may not be directly applicable to three-dimensional suspensions
(cf. Ingber & Mondy 1994, for example), understanding how geometric variations
affect fluid–particle interactions is required to develop accurate physically based
models for actual suspensions with multidisperse particles of varying shape.

These new experimental results strengthen the results and conjectures of DA00 on
the dynamics of non-circular bodies in simple shear. Freely rotating centrosymmetric
bodies with aspect ratio below unity sample different, or time-varying, torques in
simple shear over one rotation period. As Reynolds number increases, the range of
sampled torques increases, until the negative torque component is large enough to
bring the cylinder to rest at a nearly horizontal orientation above some critical value.
Nevertheless, several issues remain unresolved. Do all centrosymmetric bodies of
arbitrary shape and density in simple shear with aspect ratio below unity and above
zero transition to stationary behaviour? Or are there bodies with aspect ratios just
below unity where the critical Reynolds number (if it exists) exceeds the Reynolds
number limit for stable plane Couette flow? Since increased confinement appears
to increase the critical Reynolds number, will highly confined bodies also exhibit
this transition? These issues are relevant to both bluff-body flows and particle–fluid
interactions in sheared suspensions.
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